Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578954

RESUMEN

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Fosfohidrolasa PTEN , Animales , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratas , Ratones , Masculino , Fosfohidrolasa PTEN/metabolismo , Ácido Oléico/farmacología , Insulina/metabolismo , Ratones Endogámicos C57BL , Secreción de Insulina/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Ratas Sprague-Dawley
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982168

RESUMEN

Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Musculares/metabolismo , Fosforilación , Palmitatos/metabolismo , Ácido Rosmarínico
3.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500723

RESUMEN

The pancreas is a glandular organ with endocrine and exocrine functions necessary for the maintenance of blood glucose homeostasis and secretion of digestive enzymes. Pancreatitis is characterized by inflammation of the pancreas leading to temporary or permanent pancreatic dysfunction. Inflammation and fibrosis caused by chronic pancreatitis exacerbate malignant transformation and significantly increase the risk of developing pancreatic cancer, the world's most aggressive cancer with a 5-year survival rate less than 10%. Berberine (BBR) is a naturally occurring plant-derived polyphenol present in a variety of herbal remedies used in traditional medicine to treat ulcers, infections, jaundice, and inflammation. The current review summarizes the existing in vitro and in vivo evidence on the effects of BBR against pancreatitis and pancreatic cancer with a focus on the signalling mechanisms underlying the effects of BBR.


Asunto(s)
Berberina , Neoplasias Pancreáticas , Pancreatitis , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Inflamación/patología , Neoplasias Pancreáticas
4.
Cells ; 11(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011728

RESUMEN

Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.


Asunto(s)
Abietanos/farmacología , Adipocitos/patología , Ácidos Grasos no Esterificados/toxicidad , Resistencia a la Insulina , Células Musculares/patología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Animales , Línea Celular , Glucosa/metabolismo , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Modelos Biológicos , Células Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/toxicidad , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
Endocr Connect ; 10(8): 861-872, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319253

RESUMEN

Plasma free fatty acids (FFAs) are elevated in obesity and can induce insulin resistance via endoplasmic reticulum (ER) stress. However, it is unknown whether hepatic insulin resistance caused by the elevation of plasma FFAs is alleviated by chemical chaperones. Rats received one of the following i.v. treatments for 48 h: saline, intralipid plus heparin (IH), IH plus the chemical chaperone 4-phenylbutyric acid (PBA), or PBA alone and a hyperinsulinemic-euglycemic clamp was performed during the last 2 h. PBA co-infusion normalized IH-induced peripheral insulin resistance, similar to our previous findings with an antioxidant and an IκBα kinase ß (IKKß) inhibitor. Different from our previous results with the antioxidant and IKKß inhibitor, PBA also improved IH-induced hepatic insulin resistance in parallel with activation of Akt. Unexpectedly, IH did not induce markers of ER stress in the liver, but PBA prevented IH-induced elevation of phosphorylated eukaryotic initiation factor-2α protein in adipose tissue. PBA tended to decrease circulating fetuin-A and significantly increased circulating fibroblast growth factor 21 (FGF21) without affecting markers of activation of hepatic protein kinase C-δ or p38 mitogen-activated protein kinase that we have previously involved in hepatic insulin resistance in this model. In conclusion: (i) PBA prevented hepatic insulin resistance caused by prolonged plasma FFA elevation without affecting hepatic ER stress markers; (ii) the PBA effect is likely due to increased FGF21 and/or decreased fetuin-A, which directly signal to upregulate Akt activation.

6.
Appl Physiol Nutr Metab ; 46(7): 819-827, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33471600

RESUMEN

Impaired action of insulin in skeletal muscle, termed insulin resistance, leads to increased blood glucose levels resulting in compensatory increase in insulin levels. The elevated blood glucose and insulin levels exacerbate insulin resistance and contribute to the pathogenesis of type 2 diabetes mellitus. In previous studies we found attenuation of free fatty acid-induced muscle cell insulin resistance by rosemary extract (RE). In the present study we investigated the effects of RE on high glucose (HG) and high insulin (HI)-induced muscle cell insulin resistance. Exposure of L6 myotubes to 25 mmol/L glucose and 100 nmol/L insulin for 24 h, to mimic hyperglycemia and hyperinsulinemia, abolished the acute insulin-stimulated glucose uptake, increased the serine phosphorylation of IRS-1 and the phosphorylation/activation of mTOR and p70S6K. Treatment with RE significantly improved the insulin-stimulated glucose uptake and increased the acute insulin-stimulated tyrosine phosphorylation while reducing the HG+HI-induced serine phosphorylation of IRS-1 and phosphorylation of mTOR and p70S6K. Additionally, treatment with RE significantly increased the phosphorylation of AMPK, its downstream effector ACC and the plasma membrane GLUT4 levels. Our data indicate a potential of RE to counteract muscle cell insulin resistance and more studies are required to investigate its effectiveness in vivo. Novelty: RE phosphorylated muscle cell AMPK and ACC under both normal and HG+HI conditions. The HG+HI-induced serine phosphorylation of IRS-1 and activation of mTOR and p70S6K were attenuated by RE. RE restored the insulin-stimulated glucose uptake by enhancing GLUT4 glucose transporter translocation to plasma membrane.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Activación Enzimática/efectos de los fármacos , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/metabolismo , Extractos Vegetales/farmacología , Rosmarinus , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Glucemia/metabolismo , Células Cultivadas , Desoxiglucosa/metabolismo , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosforilación , Ratas , Serina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tirosina/metabolismo
7.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664532

RESUMEN

Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance.


Asunto(s)
Adenilato Quinasa/fisiología , Ácidos Grasos no Esterificados/toxicidad , Resistencia a la Insulina/fisiología , Músculo Esquelético/efectos de los fármacos , Resveratrol/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Línea Celular , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Palmitatos/farmacología , Palmitatos/toxicidad , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
8.
Cells ; 9(5)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365859

RESUMEN

Interleukin-6 (IL-6) is a pleiotropic cytokine that can be released from the brain during prolonged exercise. In peripheral tissues, exercise induced IL-6 can result in GLUT4 translocation and increased glucose uptake through AMPK activation. GLUT4 is expressed in the brain and can be recruited to axonal plasma membranes with neuronal activity through AMPK activation. The aim of this study is to examine if IL-6 treatment: (1) results in AMPK activation in neuronal cells, (2) increases the activation of proteins involved in GLUT4 translocation, and (3) increases neuronal glucose uptake. Retinoic acid was used to differentiate SH-SY5Y neuronal cells. Treatment with 100 nM of insulin increased the phosphorylation of Akt and AS160 (p < 0.05). Treatment with 20 ng/mL of IL-6 resulted in the phosphorylation of STAT3 at Tyr705 (p ≤ 0.05) as well as AS160 (p < 0.05). Fluorescent Glut4GFP imaging revealed treatment with 20ng/mL of IL-6 resulted in a significant mobilization towards the plasma membrane after 5 min until 30 min. There was no difference in GLUT4 mobilization between the insulin and IL-6 treated groups. Importantly, IL-6 treatment increased glucose uptake. Our findings demonstrate that IL-6 and insulin can phosphorylate AS160 via different signaling pathways (AMPK and PI3K/Akt, respectively) and promote GLUT4 translocation towards the neuronal plasma membrane, resulting in increased neuronal glucose uptake in SH-SY5Y cells.


Asunto(s)
Adenilato Quinasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Interleucina-6/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenilato Quinasa/fisiología , Transporte Biológico , Línea Celular , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/fisiología , Humanos , Insulina/metabolismo , Interleucina-6/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Nutrients ; 12(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230718

RESUMEN

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), is linked to hyperinsulinemia, which develops to counterbalance initial peripheral hormone resistance. Studies indicate that chronically elevated levels of insulin lead to skeletal muscle insulin resistance by deregulating steps within the insulin signaling cascade. The polyphenol resveratrol (RSV) has been shown to have antidiabetic properties in vitro and in vivo. In the present study, we examined the effect of RSV on high insulin (HI)-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal muscle cells were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to HI levels (100 nM) for 24 h decreased the acute-insulin-stimulated 2DG uptake, indicating insulin resistance. HI increased ser307 and ser636/639 phosphorylation of IRS-1 (to 184% ± 12% and 225% ± 28.9% of control, with p < 0.001 and p < 0.01, respectively) and increased the phosphorylation levels of mTOR (174% ± 6.7% of control, p < 0.01) and p70 S6K (228% ± 33.5% of control, p < 0.01). Treatment with RSV abolished these HI-induced responses. Furthermore, RSV increased the activation of AMPK and restored the insulin-mediated increase in plasma membrane GLUT4 glucose transporter levels. These data suggest that RSV has a potential to counteract the HI-induced muscle insulin resistance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/citología , Resveratrol/farmacología , Animales , Línea Celular , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratas , Serina-Treonina Quinasas TOR/metabolismo
10.
Antioxidants (Basel) ; 8(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234300

RESUMEN

Insulin resistance, a pathological condition characterized by defects in insulin action leads to the development of Type 2 diabetes mellitus (T2DM), a disease which is currently on the rise that pose an enormous economic burden to healthcare systems worldwide. The current treatment and prevention strategies are considerably lacking in number and efficacy and therefore new targeted therapies and preventative strategies are urgently needed. Plant-derived chemicals such as metformin, derived from the French lilac, have been used to treat/manage insulin resistance and T2DM. Other plant-derived chemicals which are not yet discovered, may have superior properties to prevent and manage T2DM and thus research into this area is highly justifiable. Hydroxytyrosol is a phenolic phytochemical found in olive leaves and olive oil reported to have antioxidant, anti-inflammatory, anticancer and antidiabetic properties. The present review summarizes the current in vitro and in vivo studies examining the antidiabetic properties of hydroxytyrosol and investigating the mechanisms of its action.

11.
Nutrients ; 10(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400151

RESUMEN

Elevated blood free fatty acids (FFAs), as seen in obesity, impair muscle insulin action leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation of the insulin receptor substrate (IRS) is linked to insulin resistance and a number of serine/threonine kinases including JNK, mTOR and p70 S6K have been implicated in this process. Activation of the energy sensor AMP-activated protein kinase (AMPK) increases muscle glucose uptake, and in recent years AMPK has been viewed as an important target to counteract insulin resistance. We reported recently that rosemary extract (RE) increased muscle cell glucose uptake and activated AMPK. However, the effect of RE on FFA-induced muscle insulin resistance has never been examined. In the current study, we investigated the effect of RE in palmitate-induced insulin resistant L6 myotubes. Exposure of myotubes to palmitate reduced the insulin-stimulated glucose uptake, increased serine phosphorylation of IRS-1, and decreased the insulin-stimulated phosphorylation of Akt. Importantly, exposure to RE abolished these effects and the insulin-stimulated glucose uptake was restored. Treatment with palmitate increased the phosphorylation/activation of JNK, mTOR and p70 S6K whereas RE completely abolished these effects. RE increased the phosphorylation of AMPK even in the presence of palmitate. Our data indicate that rosemary extract has the potential to counteract the palmitate-induced muscle cell insulin resistance and further studies are required to explore its antidiabetic properties.


Asunto(s)
Ácidos Grasos no Esterificados/toxicidad , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Ácido Palmítico/toxicidad , Extractos Vegetales/farmacología , Rosmarinus/química , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Ratas , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
Appl Physiol Nutr Metab ; 43(12): 1307-1313, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29847739

RESUMEN

Various in vivo studies have investigated the insulin response that is elicited when glutamate is elevated in circulation or in a given tissue; fewer studies have investigated the effects of glutamate on glucose uptake and handling. Glutamate ingestion in humans can attenuate rises in blood glucose following a carbohydrate load in the absence of increases in serum insulin concentrations. However, the underlying mechanisms have yet to be investigated. To elucidate the effects of glutamate on glucose handling in skeletal muscle tissue, differentiated rat L6 myocytes were treated with glutamate, and glucose uptake was assessed with the use of 2-[3H]-deoxy-d-glucose ([3H]-2-DG). Cells treated with 2 mmol/L glutamate experienced the greatest increase in [3H]-2-DG uptake relative to the control condition (177% ± 2% of control, P < 0.001) and the uptake was similar to that of metformin (184% ± 4%, P < 0.001). In line with these findings, differentiated glucose transporter 4 (GLUT4)-overexpressing myotubes treated with 2 mmol/L glutamate displayed significantly increased GLUT4 translocation when compared with the control condition (159% ± 8% of control, P < 0.001) and to an extent similar to that of insulin and metformin (181% ± 7% and 159% ± 12%, respectively). An AMP-activated protein kinase (AMPK) inhibitor (Compound C) abolished the glutamate-stimulated glucose uptake (98% ± 12% of control), and Western blotting revealed significantly elevated AMPK phosphorylation (278% ± 17% of control, P < 0.001) by glutamate. Our findings suggest that when muscle cells are exposed to increased glutamate concentrations, glucose uptake into these cells is augmented through AMPK activation, through mechanisms distinct from those of insulin and leucine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Ácido Glutámico/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Animales , Transportador de Glucosa de Tipo 4/metabolismo , Ratas
13.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-29710819

RESUMEN

Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Insulin action in muscle activates the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway causing the translocation of intracellularly stored GLUT4 glucose transporters to the plasma membrane and increased glucose uptake. Impaired insulin action in muscle results in insulin resistance and type 2 diabetes mellitus (T2DM). Activation of the energy sensor AMP-activated kinase (AMPK) increases muscle glucose uptake and the use of AMPK activators is viewed as an effective strategy to combat insulin resistance. Rosemary extract (RE) has been shown to stimulate muscle AMPK and glucose uptake, but the exact components responsible for these effects are unknown. In the current study, we investigated the effect of carnosol, a RE polyphenol, in L6 rat muscle cells. Carnosol stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner, did not affect Akt, increased AMPK phosphorylation and plasma membrane GLUT4 levels. The carnosol-stimulated glucose uptake and GLUT4 translocation was significantly reduced by the AMPK inhibitor compound C (CC). Our study is the first to show an AMPK-dependent increase in muscle glucose uptake by carnosol. Carnosol has potential as a glucose homeostasis regulating agent and deserves further study.


Asunto(s)
Abietanos/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Fibras Musculares Esqueléticas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Línea Celular , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Ratas
14.
Molecules ; 22(10)2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991159

RESUMEN

Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Impaired insulin action in muscles leads to insulin resistance and type 2 diabetes mellitus. 5' AMP-activated kinase (AMPK) is an energy sensor, its activation increases glucose uptake in skeletal muscle and AMPK activators have been viewed as a targeted approach in combating insulin resistance. We previously reported AMPK activation and increased muscle glucose uptake by rosemary extract (RE). In the present study, we examined the effects and the mechanism of action of rosmarinic acid (RA), a major RE constituent, in L6 rat muscle cells. RA (5.0 µM) increased glucose uptake (186 ± 4.17% of control, p < 0.001) to levels comparable to maximum insulin (204 ± 10.73% of control, p < 0.001) and metformin (202 ± 14.37% of control, p < 0.001). Akt phosphorylation was not affected by RA, while AMPK phosphorylation was increased. The RA-stimulated glucose uptake was inhibited by the AMPK inhibitor compound C and was not affected by wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). The current study shows an effect of RA to increase muscle glucose uptake and AMPK phosphorylation. RA deserves further study as it shows potential to be used as an agent to regulate glucose homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cinamatos/farmacología , Depsidos/farmacología , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Polifenoles/farmacología , Rosmarinus/química , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular , Cinamatos/aislamiento & purificación , Depsidos/aislamiento & purificación , Activación Enzimática , Músculo Esquelético/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Pirazoles/metabolismo , Pirimidinas/metabolismo , Ratas , Wortmanina/farmacología , Ácido Rosmarínico
15.
Nutrients ; 9(9)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862678

RESUMEN

Type 2 diabetes mellitus (T2DM), a disease on the rise and with huge economic burden to health care systems around the globe, results from defects in insulin action (termed insulin resistance) combined with impaired insulin secretion. Current methods of prevention and treatments for insulin resistance and T2DM are lacking in number and efficacy and, therefore, there is a need for new preventative measures and targeted therapies. In recent years, chemicals found in plants/herbs have attracted attention for their use as functional foods or nutraceuticals for preventing and treating insulin resistance and T2DM. Rosemary is an evergreen shrub indigenous to the Mediterranean region and South America, which contains various polyphenols. Rosemary extract and its polyphenolic constituents have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-hyperglycemic properties. The current review summarizes the existing in vitro and in vivo studies examining the anti-diabetic effects of rosemary extract and its polyphenolic components and highlights the known mechanism of action.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Rosmarinus/química , Humanos , Resistencia a la Insulina , Extractos Vegetales/química
16.
Biofactors ; 43(4): 517-528, 2017 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-28612982

RESUMEN

Cancer cells exhibit enhanced proliferation rate and a resistance to apoptosis. Epidemiological studies suggest that olive oil intake is associated with a reduced risk of cancer. Olive oil, olives, and olive leaves contain many polyphenols, including oleuropein. Recently, several studies have demonstrated that oleuropein inhibits proliferation and induces apoptosis in different cancer cell lines. In addition, anticancer effects of oleuropein have been seen in animal studies. These effects are associated with oleuropein's ability to modulate gene expression and activity of a variety of different signaling proteins that play a role in proliferation and apoptosis. This article summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of oleuropein and its effects on key signaling molecules. © 2017 BioFactors, 43(4):517-528, 2017.


Asunto(s)
Antineoplásicos/uso terapéutico , Iridoides/uso terapéutico , Animales , Antocianinas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Glucósidos Iridoides , Obesidad/metabolismo
17.
Clin Exp Pharmacol Physiol ; 44(1): 94-102, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27716981

RESUMEN

Compounds that increase the activity of the energy sensor AMP-activated kinase (AMPK) have the potential to regulate blood glucose levels. Although rosemary extract (RE) has been reported to activate AMPK and reduce blood glucose levels in vivo, the chemical components responsible for these effects are not known. In the present study, we measured the levels of the polyphenol carnosic acid (CA) in RE and examined the effects and the mechanism of action of CA on glucose transport system in muscle cells. High performance liquid chromatography (HPLC) was used to measure the levels of CA in RE. Parental and GLUT4myc or GLUT1myc overexpressing L6 rat myotubes were used. Glucose uptake was assessed using [3 H]-2-deoxy-d-glucose. Total and phosphorylated levels of Akt and AMPK were measured by immunoblotting. Plasma membrane GLUT4myc and GLUT1myc levels were examined using a GLUT translocation assay. Statistics included analysis of variance (ANOVA) followed by Tukey's post-hoc test. At concentrations found in rosemary extract, CA stimulated glucose uptake in L6 myotubes. At 2.0 µmol/L CA a response (226 ± 9.62% of control, P=.001), similar to maximum insulin (201 ± 7.86% of control, P=.001) and metformin (213 ± 10.74% of control, P=.001) was seen. Akt phosphorylation was not affected by CA while AMPK and ACC phosphorylation was increased and the CA-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C. Plasma membrane GLUT4 or GLUT1 glucose transporter levels were not affected by CA. Our study shows increased muscle cell glucose uptake and AMPK activation by low CA concentrations, found in rosemary extract, indicating that CA may be responsible for the antihyperglycemic properties of rosemary extract seen in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Abietanos/farmacología , Glucosa/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Rosmarinus , Abietanos/aislamiento & purificación , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Musculares/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...